

Transport Materials are Critical Components in High-Performance OLED Devices

- Enable key performance characteristics
 - Low voltage
 - Long lifetime
- Voltage and lifetime typically trade-off in devices. Charge balance is key to maximize both properties.
- Reducing drive voltage to ~ 3V is a challenge. Can this be done with a single material or is p/n doping the best approach?

Trade-off between Lifetime and Efficiency

E. Böhm, C. Pflumm, F. Voges, M. Flämmich, H. Heil, A. Büsing, A. Parham, R. Fortte, T. Mujica, IDW'09, OLED1-2, p.431 (2009).

This behavior is well-established, particularly for fluorescent blue OLEDs

Tuning Charge Balance with Mixed Host

Mixed host systems

Two host components are used to adjust charge balance

- Lifetime improvement by a factor of two
- Low roll-off
- Low voltage

compared to single host system

Host materials (TMMs) are key to optimize & control charge balance in the device

Tuning Charge Balance with Mixed Host

Requirements

- Balance can be tuned by adjusting the host mixing ratio: e-type TMM + h-type TMM
- Customized for customer device

Cathode and ETM control electron supply

ITO (+ treatment) and HTMs control hole supply

Merck addresses triplet Green,
 Yellow & Red OLFDs

Balance Adjustment

Example: combination of

- h-type (material A and B) with
- e-type (material 1 and 2)

		-	h-type			
	e-type:	h-type:	Α	В		
		Best co-host ratio	>10%	47%		
		LT50 [h]	100%	180%		
Φ	1	Eff. [cd/A]	100%	120%		
e-type		V [V]	3.8	3.9		
φ	2	Best co-host ratio	32%	>63%		
		LT50 [h]	150%	110%		
		Eff. [cd/A]	120%	105%		
▼		V [V]	3.7	4.5		

Charge Balance Optimization through the Introduction of an HBL

With a hole-rich EML mixture, we need to adjust the charge balance by introducing an HBL

Lifetime and efficiency are further improved with the introduction of an HBL

A Winning Strategy Leading to Impressive Results in Solution Processed Devices

CIE	Eff [cd/A]	Voltage [V]	EQE [%]	Est. LT50 [h]
x,y	@1000cd/m²	@1000cd/m²	@1000cd/m²	@1000cd/m²
0.33, 0.63	81.3	4.7	21.8	

Record efficiency & LT in phosphorescent green with more hole-injecting HTL.

The gap between solution and vapor processing is closed?

Charge Balance Optimization

Adding more electron transportting materials to EML mixtures results in lower voltage, but reduced lifetime

→ Not enough holes to counterbalance the electrons!

For a given EML mixture, vary the hole injection properties of the HTL.

→ HTL with strong hole injection can improve voltage and lifetime simultaneously!

Introduction of more hole-injecting transport layers significantly improves lifetime

Performance Progress – Solution Processing

Huge performance improvement with new materials in optimized devices

Novel HTMs with Electron Blocking Capability

Cathode
ETL
S-Blue EML
New HTM
HTM-081
HIL
ITO

НТМ	CIE x/y	Efficiency [cd/A] @ 1000 cd/m²	Voltage [V] @ 1000 cd/cm²	EQE [%] @ 2000 cd/m²	LT ₅₀ [h] @ 1000 cd/m² (based on n=2)
HTM-081	0.14/0.14	9.2	4.1	8.4	21 000
New HTM	0.13/0.14	13.2	4.1	11.6	44 000

→ Further improvement compared to HTM-081 based device

- EMD / Merck have developed a variety of new HTMs, for use as hole transporting layers with high triplet level & electron blocking capability
- New stack configurations provide excellent lifetime, efficiency and voltage for fluorescent & phosphorescent devices

EMD: OLED Solution Provider

R&D experts

M&S experts

~1,400 patents

Commitment to OLED

- New investment of MRC Darmstadt (2009), extensions in 2013 and 2014
- Extension of OLED scale-up and production in DA in 2013
- Setup of OLED formulation in Germany and UK 2012/13
- Continuous Investment in laboratories in Korea, Taiwan and Japan

We Make Communication Visible™

Thank you for your kind attention.